
SPACE-FLIGHT DESIGN
VERIFICATION TECHNIQUES

By Omar Haddad
ReSpace/MAPLD Conference

August 2011

Introduction

 Covers verification issues, not design issues

 Covers Space-flight verification issues, not
general verification issues

 Agenda

 Testing Radiation-Hardened Designs

 Risk Mitigation

 Signal Visibility

 Cost and Schedule Reduction

A discussion of the unique challenges of verifying
designs destined for space environments

Testing Radiation-Hardened Designs

Triple Modular Redundancy

 TMR in FPGA Fabric
 TMR is built in at the register level
 Can’t verify TMR operation

 Synthesis-based TMR
 Use formal verification tools to validate synthesis
 Inject SEU and SET errors during gate-level simulation
 Impractical and tedious

 Medium and Course-Grained TMR
 User-designed voter
 Add error injection capability into design
 Verify voting and recovery scheme
 Verify event counters

 Real Radiation Testing Recommended

Error Detection And Correction
With Memories

 Error Injection
 Add error injection capability into design
 Consider one-time vs persistent injection

 Add visibility and error injection to syndrome data

 Correctable and Uncorrectable Errors
 Test limits of EDAC scheme

 Test error counters and error logs

 Test that uncorrectable errors are handled safely
 Interrupt, assert error flag, abort transaction, etc

 Test EDAC With Scrubbing, DMA, Initialization,
Arbitration

Latch-Up Detection Circuits

 Protection For Radiation-Soft Devices

 Solid State Power Controller (SSPC) Devices

 Verify ‘Trip’ Behavior

 Simulation test bench should be able to ‘trip’ the
circuit using a simulation-only ‘trip’ input

 Add test point on PCB to inject a current load

 Verify Recovery From Tripped State

Adding Visibility For Automated
Simulations

 Some transactions are not ‘visible’ to
automated tests
 Memory scrubbing, mode register writes, SDRAM

refresh cycles

 Modify simulation models to detect such
transactions
 SDRAM simulation models

 Use non-synthesized RTL code to detect such
transactions
 -translate on/off directives

Finite State Machine Operation

 Radiation Environment
 SEU and SET could cause invalid transitions to,

possibly, invalid states

 Fault Detection
 Verify that fault conditions are detected

 Use translate on/off directives to inject faults or
‘disable’ the FSM

 Verify Recovery Scheme
 FSM reset, normal operation

 Use FSM coverage tools

Watchdogs

 Commonly used to detect faults

 Implement test-mode in simulation
environment

 Advances watchdog time quicker

 Reduce simulation time

 Use different VHDL package file for simulation

 Defines terminal counts, time parameters, etc

 Verify recovery from watchdog timeout state

 Exercise entire range of timer values

When “failure is not an option”, risk must be
managed and mitigated as much as possible using
good verification techniques

Risk Mitigation

Verification Plan

R
is

k

Verification Effort

Product Quality

 Plan Contents
 Block Diagrams
 Simulation and Lab

Testing

 List of Tests and
Descriptions

 Requirements/Features
Matrix

 GSE Descriptions
 Test Bench Operation
 Issue Tracking

High Level of Code Coverage

 Goal = 100% line

 Use coverage directives
to exclude code

 Disposition Holes

 Use report during review
process

100

95

90

84

86

88

90

92

94

96

98

100

Coverage

Line

Branch

Condition

Random Testing

 Tricky Corner Case Bugs

 Select Parameters To Randomize
 Data rate, transaction size, number of transactions, delay between

transactions, etc

 Select Constraints
 Max data rate in mode X, max transaction size in mode Y, etc

 Select Random Variable Distribution
 Add more weight to normal operating parameters

Directed Tests

Random Tests

Beginning End

Bugs

Cost

Self-Checking Automated
Tests
 Simulation and Lab Environments

 Do NOT rely on visual waveform analysis
 You WILL miss problems

 Add timing checks in simulation models of
non-FPGA devices
 Use assertion statements to cause the test to fail

when violations are encountered

 Use for regression testing, code coverage,
SDF simulations
 Run in batch mode (non-interactively)

Requirements Traceability

 Create list of design
requirements

 Create list of design features

 Each requirement/feature
should be traced back to a
verification test

 Review that tests adequately
exercise
requirements/features

Environmental Testing

 Automate and Archive

 Vary Board Voltages During Thermal Vacuum
Testing

 Emulates TID exposure effects

 Setup/Hold Timing

 FPGA Core Voltage

 Voltage Regulator Feedback Resistor

Signal Visibility

How to overcome the challenges of signal visibility
during environmental testing

Probing Internal FPGA Signals

 Actel-Microsemi Silicon Explorer

 Can view up to 4 signals simultaneously

 FPGA output limited to ~80MHz

 Choose JTAG signal buffering and
termination wisely

 Use differential drivers for higher frequencies

Debug Mux
 Add debug multiplexor to

FPGA design
 Inputs come from user-logic
 FSM vectors, data busses,

flags, etc

 Select signals driven by user
 Output goes to FPGA IO

pins
 On-board logic analyzer

connector
 Board IO

 Good for higher
frequencies

 Define synthesis
constraints appropriately

FPGA

Logic
Analyzer

On-board Logic Analyzer

 Xilinx ChipScope Pro,
Actel CLAM

 Use FPGA resources

 Internal triggering and
signal buffering

 Limitations
 Trace depth

 Sample rate

 Number of signals

Using SERDES

 Connect multiple DUT IO to on-board
SERDES device

 SERDES components inactive during normal
operation

 Can use with debug mux or internal probe

Probing Method Comparison

Method Overhead Complexity Width Depth Cost

Internal Probe Low Med Low High Low

Debug Mux Med Low Med Low Low

On-Board LA High High Low-Med High Med

SERDES High High Low-Med High High

Width = Number of signal that can be probed simultaneously
Depth = Number of signals that can be selected for probing without resynthesizing

Practical verification tips that help to reduce cost
and schedule.

Cost And Schedule Reduction

Simulation Intensive

 Invest in developing a high-fidelity simulation
environment

 Use datasheets to create simulation models

 Simulate PCB netlist

 Simulate GSE and connectivity to DUT

 Use code coverage to ensure that design is
fully tested

 Avoid costly PCB re-spins

 Avoid late-phase bugs

Board Level Simulation and
Testing
 Enables test portability

from simulation to lab
testing

 FPGA-level testing is good
for creating corner case
scenarios easier
 Board-level test bench is

sufficient

 Catch netlist errors before
building PWB

 Catch manufacturing
defects as early as possible

FPGA
Testbench

Board
Testbench

(Normal
Operation)

Using Programmable GSE

 Control Design of GSE
 Highly customized

feature/requirements

 Implementing modified
standard

 Reduce GSE Costs
 Integrate functionality

of multiple GSE units
into one

 Replace costly COTS
units with
programmable GSE

 Weigh long-term cost
of developing IP core
Vs. purchasing COTS
GSE

Programmable

GSE

COTS
GSE

Libraries of Verification IP

 Use Standardized Interfaces
 Easier to mix and match cores needed

 Easier to share with others

 Interconnect bus

 Thorough Documentation
 Allows others to use IP properly

 HW and SW Elements
 Document, develop, and manage both elements

 ‘Plug-n-Play’
 Hide lower level details as much as possible

Code Re-use

 Standardize the IP core design process
 Use an agency-wide document

 Architect designs to maximize reuse
 Add generic functionality as needed

 Avoid temptation to over-design

 Use board level test bench
 Simulation tests can be re-used in lab

 Treat board as a black-box
 Do not force or sample internal signals with tests

 Drive and sample board-level IO with GSE simulation
models

A GSFC-developed digital design verification
process

Case Study: Total Verification System

Test Bench Diagram

 Detailed diagram described in each board’s
verification plan document

 Board-level netlist simulation
 IP Cores determine capability of TVS

TVS GSE

TVS FPGA
TVS GSE

TVS FPGA
Host
PC

DUT

FPGA 1

FPGA N
USB

TVS IP Cores

TVS Hardware

 Xilinx Spartan-3 FPGA
 LVDS – 12 out, 12 in (on 6 MicroD-9 connectors)
 RS422 – 20 out, 44 in (on 5 D-sub connectors)
 TTL/LVTTL Outputs – 20 (3.3V/5V selectable in

groups of 4)
 Digital Inputs – 8 (accepts 3.3V – 15V)

TVS FPGA
 Re-usable Modular

Verification IP Cores

 Customizable
Reference Designs

 Hi Fidelity
Simulation Models

TVS FPGA

Host
Interface

IP Core2 IP Core3 IP Core4

IP Core1
Wishbone Bus

DUT

Function
A

Function
B

Function
C

HOST PC

Test

DLL1 DLL2 DLL3 DLL4

TVS C++ Classes

 Provide high-level functions that hide lower
level details

 Furnished as DLLs and header files

 Can be compiled for use with a variety of
programming languages

 Used by regression tests to exercise DUT
requirements and features

 Each IP core is provided with its own DLL

C++ Based Verification
Environment  GSFC-

Developed
Simulator
Interface

 Re-Use C++
Tests
 Recompiled to

use USB driver

 Run Tests
Control Center
 User-friendly

GUI

Host PC
ModelSim Simulator

TVS

GSE

and

FPGA

Board

(DUT)S
im

u
la

to
r

In
te

rf
a
c
e

C++

tests

Host PC

U
S

B

D
ri
v
e

r

USB

Simulation

Board Lab Testing

TVS

GSE

and

FPGA

Board

(DUT)

Run

Tests

C++

tests

Run

Tests

Current Usage at GSFC

Mission Sub-System Units

LRO C&DH 2

GPM C&DH 5

MMS C&DH, ACS 29

Astro-H ADRC 1

ICE-Sat-2 ATLAS Avionics 9

 Total: 46 Units

 Assembled and
procured by third party
for each mission

Commercialization Effort

 TVS HW and SW available for
commercialization

 Licensing Agreement for HW

 Copyright for SW elements of test bench
environment

 TVS IP cores can be made available

 Copyright for VHDL and C++ code

 Contact for
more information

